Эксперт
Сергей
Сергей
Задать вопрос
Мы готовы помочь Вам.

Контрольная работа № 1

Вариант 1

Задача №1

Масса образца камня в сухом состоянии 50г. Определить массу образца после насыщения его водой, а также истинную плотность твердого вещества камня, если известно, что водонасыщение по объему равно 18%, пористость камня – 25%, средняя плотность – 1800 кг/м3.

m1 = 50г

m2 = ?

П = 25%

Ρ=1800 кг/м3

Решение

Используем формулу

пористости

П = (1 – m / 

Или

25 = (1 – 1800/)*100,

отсюда

 

Истинная плотность

 

=1800 / (1 – 0.25) =2400 кг/м3

 

Используем соотношение

 

Bv / Bm = m

 

Bv : [(m2 – m1)/m1*100] = m

 

Здесь плотность указана в г/cм3

 

 

18 : [(m2 – 50) / 50 * 100] = 1.8

 

отсюда m2= (Bv* m1)/m*100)+ m1 = 55 г

 

 

Задача №2

Сколько получится известкового теста, содержащего 50% воды, из 2т извести – кипелки, имеющей активность 85%?

Решение

Определяем количество Извести-кипелки с учетом ее активности.

2т=2000кг*0,85=1700кг.

Составляем уравнение реакции извести-кипелки с водой.

CaO+H2O=Ca(OH)2

Находим молекулярные массы

56+18=74 г/моль

При активности негашеной извести 85% получим гидратной извести

2000*(74/56*0,85+0,15)= 2546,43кг.

В составе теста известь составляет 50% по весу и 50% вода, следовательно на 2546 кг гидратной извести необходимо иметь 2546 л воды, тогда известкового теста будет : 5092кг.

Вопросы и задания:

1. Как меняются свойства строительных материалов под действием атмосферных факторов?

 

Атмосфе́рные явле́ния — видимое проявление сложных физико-химических процессов, происходящих в воздушной оболочке Земли — атмосфере

Воздействие атмосферных условий на различные материалы это абсолютно естественный процесс, который разрушающе действует на все материалы. Даже самые крепкие материалы под воздействием воды и времени разрушаются. Несколько примеров:

коррозия и окисление металла (сталь, алюминий, цинк)

потускнение цвета дерева

изменение цвета камня или бетона

выветривание камня и раствора.

Разрушение кладки кирпича из-за капиллярного попадания воды в поры и дальнейшего замерзания и оттаивания.

 

2. Какие материалы называются огнеупорными? Область применения огнеупорных материалов.

 

Огнеупорные материалы (огнеупоры) — это материалы, изготовляемые на основе минерального сырья и отличающиеся способностью сохранять без существенных нарушений свои функциональные свойства в разнообразных условиях службы при высоких температурах. Применяются для проведения металлургических процессов (плавка, отжиг, обжиг, испарение и дистилляция), конструирования печей, высокотемпературных агрегатов (реакторы, двигатели, конструкционные элементы и др). Огнеупоры бывшие в употреблении называются огнеупорным ломом и используются в переработке.

Большинство огнеупорных изделий выпускают в виде простых изделий типа прямоугольного параллелепипеда массой в несколько килограмм. Это универсальная форма для выполнения футеровки различной конфигурации. На сегодня в огнеупорной промышленности происходит уменьшение выпуска огнеупоров в виде простых изделий и соответствующее увеличение производства огнеупорных бетонов и мас.

Огнеупорные материалы отличаются повышенной прочностью при высоких температурах, химической инертностью. По составу огнеупорные материалы это керамические смеси тугоплавких оксидов, силикатов, карбидов, нитридов, боридов. В качестве огнеупорного материала применяется углерод (кокс, графит). В основном это неметаллические материалы, обладающие огнеупорностью не ниже 1580°C, применяются практически везде где требуется ведение какого-либо процесса при высоких температурах.

Область применения

Огнеупоры имеют очень много областей применения, но всех их можно разбить на две основные группы, это огнеупоры (огнеупорные изделия, например, кирпич) общего назначения, и огнеупоры, спроектированные специально для какого-либо теплового агрегата. Огнеупорные материалы применяются в металлургической, стекольной, сахарной, машиностроительной, химической промышленности, а также во всех других отраслях, где проходит работа с применением доменных, шахтных и вращающихся печей.

 

3. Какие добавки вводятся в глины при изготовлении керамических изделий и каково их назначение?

 

Для придания различных свойств как глинам, так и получаемым из них керамическим изделиям в глину вводят различные добавки. Кратко рассмотрим добавки, имеющие наиболее частое применение.

Отощающие добавки

В высокопластичные глины, требующие для затворения большого количества воды (до 28%) и поэтому дающие большую линейную усадку при сушке и обжиге (до 15%), необходимо вводить отощающие добавки, т. е. непластичные вещества. При этом значительно уменьшается количество воды, необходимой для затворения глиняного теста, что сокращает размер усадки (до 2—6%).

VB качестве отощающих добавок чаще всего применяют вещества неорганического происхождения — кварцевый песок, шамот (обожженная и измельченная глина) и бой изделий, молотый шлак и золу. Эти добавки не только уменьшают усадку изделий, но и улучшают формовочные свойства массы, облегчают технологический процесс производства и устраняют брак. В ряде случаев они улучшают физические свойства изделий, например термостойкость и теплопроводность.

Выгорающие добавки

Для получения изделий с меньшим объемным весом и увеличенной пористостью применяют органические выгорающие добавки. Наиболее часто используются древесные опилки, угольная мелочь и угольный порошок, торфяная пыль и др. Применяют также вещества, выделяющие при высокой температуре обжига углекислоту, что ведет к образованию пор — мел, доломит и глинистый мергель (в молотом виде). Все эти добавки обладают также и свойствами отощающих добавок.

Специальные добавки

Для придания керамическим изделиям специальных свойств могут применяться соответствующие добавки. Так, например, при изготовлении кислотоупорных изделий и облицовочных плиток добавками к глинам являются песчаные смеси, затворенные жидким стеклом или щелочами. При необходимости понижения температуры обжига некоторых изделий в глину вводятся флюсы (плавни) — молотый полевой шпат, руды, содержащие железо, песчаник и др. В качестве добавок, повышающих пластичность формовочной массы, применяют в небольших дозах (0,1—0,3%) поверхностно-активные вещества, например сульфитно-спиртовую барду. Для повышения качества кирпича в виде добавки употребляют пирофосфаты и полифосфаты натрия.

Как специальные добавки можно рассматривать и окислы некоторых металлов, добавляемые в массу беложгущихся глин для окраски ее в определенный цвет.

 

4. Чем отличаются способы производства глиняного кирпича (пластическое формование и полусухое прессование) ?

 

Несмотря на то что керамические изделия отличаются большим разнообразием по назначению, форме и физико-механическим свойствам, производство их в основном примерно одинаково и состоит из следующих основных процессов:

добыча глины в карьерах;

подготовка массы, заключающаяся в дроблении глины и других компонентов смеси, увлажнении водой и перемешивании массы;

формование изделий из приготовленной массы;

сушка отформованных изделий;

обжиг предварительно высушенных изделий.

Для отдельных изделий могут быть различными технологические схемы этих процессов, например разные способы формования кирпича — пластический и полусухой, разные способы сушки — естественная и искусственная, а также могут появляться дополнительные процессы, как, например, покрытие изделий глазурью. Более подробно такие производственные процессы будут изложены при описании основных видов керамических изделий.

Заводы по производству керамических изделий часто строятся вблизи месторождения глин, и тогда глиняный карьер является составной частью завода. Разработка сырья осуществляется на карьерах открытым способом экскаваторами. К карьерным работам относятся подготовительные, обеспечивающие вскрытие и подготовку месторождений, добычные, предназначенные для извлечения глины, и транспортные, т. е. доставка глины к месту переработки, а пустой породы в отвалы. Транспортные работы осуществляются автосамосвалами или мотовозами с вагонетками. К. карьерным работам относят также естественную обработку глины (в необходимых случаях) путем вылеживания и вымораживания. Качество керамических изделий полностью зависит от состава и чистоты сырья, поэтому необходим постоянный контроль за производством карьерных работ и качеством добываемого сырья. Заводские лаборатории должны систематически анализировать поступающее сырье и в зависимости от его качества подбирать состав шихты, наиболее благоприятный для данного вида изделий.

Подготовка массы заключается в обогащении, дроблении и тонком помоле материалов и последующем тщательном перемешивании их до получения полностью однородной массы. При пластичном способе формования масса увлажняется до необходимой степени.

Для лучшего перемешивания глиняной массы после помола и измельчения компонентов используют глиномялки, которые дают однородную пластичную массу, увлажненную до нужного предела.

Формуют керамические изделия в основном двумя способами — пластическим и полусухим. При пластическом способе масса увлажняется до 20— 25% и формование производят на гидравлических или механических прессах; при полусухом масса увлажняется до 8—12% и изделия формуют прессованием. В зависимости от формы и размеров изделий используется формовочное оборудование, различное как по принципу действия, так и по мощности.

Сушка отформованных изделий является производственным процессом, необходимым лишь для изделий пластического формования. При полусухом способе производства сырцовые изделия имеют незначительную влажность, что при обжиге не вызывает растрескивания и необходимость в сушке отпадает.

Процесс сушки представляет собой комплекс явлений, связанных с испарением влаги с поверхности изделия, перемещением влаги из его внутренней части к поверхности и теплообменом между материалом и окружающей средой. Длительность сушки во многом зависит от скорости перемещения влаги в изделиях от внутренних к наружным слоям, а последнее определяется размерами капилляров и вязкостью воды. Одновременно с удалением влаги частицы материала сближаются силами поверхностного натяжения и происходит уменьшение объема глиняных изделий (усадка). Усадка каждой массы имеет определенный предел, после которого дальнейшее сокращение объема не происходит, несмотря на то, что физически связанная вода к этому моменту полностью еще не испаряется. Более пластичные глины дают большую усушку.

На заводах с большой производительностью применяют искусственную сушку в сушилках периодического или непрерывного действия. В качестве источника тепла используют газы обжигательных печей или горячий воздух. Из сушилок периодического действия широкое распространение получили камерные. Учитывая, что срок сушки изделий в искусственных сушилках не превышает 70 ч (а в большинстве случаев он значительно меньше), естественная сушка (срок сушки составляет от 6 до 15 суток) изделии в настоящее время сохранилась только на мелких кирпичных заводах с сезонным циклом производства.

Обжиг изделий является важнейшей и завершающей операцией технологического процесса производства керамических изделий. Этот процесс можно разделить на три периода: прогрев сырых изделий, собственно обжиг и регулируемое охлаждение изделий. В первом периоде из обжигаемых изделий удаляется гигроскопическая и гидратная вода, частично разлагаются карбонаты, сгорают органические примеси и равномерно прогревается вся масса изделия. В начале нагревания при температуре 100—120°С удаляется физически связанная вода, в температурном интервале 450—650° С — химически связанная вода, причем глинистые минералы разрушаются и глина переходит в аморфное состояние. Дальнейшее повышение температуры обжига приводит к расплавлению части материала, в результате чего происходит спекание массы и образование керамического черепка. Этому соответствует температура 800—1000° С для легкоплавких глин и 1150—1200° С для тугоплавких. Температурный режим и длительность обжига зависят от состава применяемой шихты. При повышении температуры обжига получают изделия с большей механической прочностью, однако чрезмерное повышение температуры может вызвать деформацию изделий.

После обжига изделия охлаждаются. Процесс охлаждения весьма ответственный, не допускающий резкой смены температур и доступа холодного воздуха, влекущих за собой образование трещин. В начальной стадии температуру снижают медленно и лишь после достижения 650° С процесс охлаждения можно ускорить.

Керамические изделия находят большое применение в строительстве. Неограниченные запасы широко распространенного сырья (глин), простота технологии и многовековый опыт производства, а также высокая долговечность их способствовали многообразному применению.
Некоторые виды керамических материалов до сего времени являются незаменимыми и наиболее распространенными в строительстве. Так, несмотря на гигантское развитие в последний период стеновых материалов, особенно железобетонных, выпуск глиняного кирпича составляет очень большую долю в производстве всех стеновых материалов. Керамические облицовочные плитки, несмотря на развитие производства облицовочных плиток на основе полимеров, все еще остаются основным материалом для отделки санитарных узлов и других помещений с режимом повышенной влажности, химической агрессивности и высоких гигиенических требований. Для облицовки зданий керамические материалы также не потеряли своего значения, хотя появилось много новых видов облицовочных материалов. Особенно велик рост выпуска таких керамических материалов, как керамзит. Штучный не индустриальный кирпич пока остается основным стеновым материалом, составляя половину всех стеновых материалов, применяемых в настоящее время.

Кирпичные стены зданий в средней полосе возводятся толщиной в 2,5 кирпича (64 см). Столь большая массивность стен вызывает высокие затраты трудовых и материальных ресурсов, увеличивает сроки строительства и удорожает его по сравнению с индустриальным строительством путем механизированной сборки зданий из крупных стеновых железобетонных панелей. Но для увеличения производства сборного железобетона требуются большие капитальные затраты и длительные сроки для строительства и освоения новых предприятий.

 

5. Что такое глиноземистый цемент? Каков его химический состав? Какие химические реакции протекают при твердении цемента?

 

Глиноземистый цемент представляет собой быстродействующий гидравлический вяжущий материал, который получают путем тонкого измельчения обожженной до спекания или сплавления богатой глиноземом сырьевой смеси. В качестве исходных материалов для получения глиноземного цемента используют известняк, известь или породы, с высоким содержанием глинозема (Al2O3). Химический состав такого цемента включает Al2O3 (минимум 35%), CaO (минимум 36%), SiO2 (2 – 4%) и Fe2О3 (10 – 14%). Внешние параметры глиноземистого цемента – это тонкий порошок серо-зеленого, коричневого или черного цвета.

  По прочности на сжатие глиноземистые цементы подразделяются на две группы: цемент марки ГЦ-40 и марки ГЦ-50. Различаются они следующими параметрами: к концу первых суток прочность цемента марки ГЦ-40 составляет 22,5 МПа, а марки ГЦ-50 – 27,4 МПа. В возрасте 3-х суток прочность ГЦ-40 – 40 МПа, ГЦ-50 – 50 МПа.

  Начало схватывания глиноземистых цементов происходит в возрасте не менее 45 минут, а конец схватывания – не позднее 10 часов. Глиноземистый цемент хорошо твердеют во влажной среде. При добавлении такого цемента в бетон, последний становится водонепроницаемым (его используют при контакте сооружений с пресной или сульфатной водой) и морозостойким, устойчивым к коррозии, что гарантирует полную сохранность арматуры. Так же бетон с добавлением глиноземистого цемента может использоваться и для строительства в зимнее время (до -10C°) без дополнительного подогрева, т. к. при твердении такой бетон выделяет большое количество тепла за короткий промежуток времени. Благодаря тому, что глиноземистый цемент является быстротвердеющим, уже через 15 – 18 часов прочность его такова, что позволяет вводить сооружения в эксплуатацию. Поэтому, несмотря на свою высокую стоимость этот цемент незаменим при срочных ремонтных и аварийных работах.

Глиноземистый цемент является одним из самых огнестойких цементов (его огнестойкость выше, чем у портландцемента). Он не теряет своих основных характеристик даже при эксплуатации в температурном режиме до 1700C°. В смеси с огнеупорными наполнителями, такими как магнезит, хромитовая руда, шамот, глиноземистый цемент используют для получения гидравлически твердеющих огнеупорных растворов и бетонов.

  При твердении цемента происходят реакции гидратации, гидролиза и обменного взаимодействия, протекающие при затворении цемента водой в жидкой фазе или на поверхности твердых частиц цемента. Большинство реакций сопровождается выделением тепла. Продукты реакции — твердые вещества либо квазитвердые, частично растворимы в воде и образуются в условиях постоянного уменьшения массы воды в процессе твердения.
Изучение химических реакций, протекающих при взаимодействии заводского цементного клинкера с водой, связано с большими трудностями. Клинкер состоит из минералов, в различной степени модифицированных твердыми растворами, застывшей жидкой фазы, стекла и т. п., и поэтому условия его твердения иные, чем у отдельных синтезированных в лабораторных условиях минералов. Кроме того, вода в процессе взаимодействия с цементом насыщается переходящими в раствор известью, гипсом и щелочами, наличие и концентрация которых в жидкой фазе твердеющего цемента существенно влияет на состав гидратных новообразований. При этом наблюдается взаимовлияние отдельных реакций, происходящих при твердении.

При гидратации индивидуальных синтетических минералов — силикатов кальция было установлено, что реакция C3S с водой приводит к образованию С352НЖ, на пограничной поверхности возникает пленка толщиной в несколько молекул. При комнатной температуре реакция C3S с водой стехиометрически описывается уравнением:

2(3CaO.Si0.2) +6H.20 = 3CaO-2Si0.r3H,0 + 3Ca(OH)2.

При гидратации портландцемента в нормальных условиях образующиеся гидросиликаты кальция имеют переменный состав, в значительной степени близки к аморфным веществам и не образуют полной кристаллической структуры, которая возникает при твердении цемента в условиях повышенных температуры и давления. Они могут быть отнесены к полукристаллическим слабозакристаллизованным соединениям.

К полукристаллическим слабозакристаллизоваииым относят также соединения, дающие на порошкограммах более трех линий, в которых отсутствует нормальный трехмерный порядок, характерный для кристаллических объектов.

 

 

Была ли полезна данная статья?
Да
64.79%
Нет
35.21%
Проголосовало: 71

или напишите нам прямо сейчас:

Написать в WhatsApp Написать в Telegram